Hyers–Ulam stability of first-order homogeneous linear differential equations with a real-valued coefficient
نویسندگان
چکیده
منابع مشابه
Hyers-Ulam stability of first-order homogeneous linear differential equations with a real-valued coefficient
This paper is concerned with the Hyers–Ulam stability of the first-order linear differential equation x′ − ax = 0, where a is a non-zero real number. The main purpose is to find an explicit solution x(t) of x′−ax = 0 satisfying |φ(t)−x(t)| ≤ ε/|a| for all t ∈ R under the assumption that a differentiable function φ(t) satisfies |φ′(t)− aφ(t)| ≤ ε for all t ∈ R. In addition, the precise behavior ...
متن کاملOn the stability of linear differential equations of second order
The aim of this paper is to investigate the Hyers-Ulam stability of the linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$ $fin C[a,b]$ and $-infty
متن کاملA new approach for solving the first-order linear matrix differential equations
Abstract. The main contribution of the current paper is to propose a new effective numerical method for solving the first-order linear matrix differential equations. Properties of the Legendre basis operational matrix of integration together with a collocation method are applied to reduce the problem to a coupled linear matrix equations. Afterwards, an iterative algorithm is examined for solvin...
متن کاملOn Second Order Homogeneous Linear Differential Equations with Liouvillian Solutions
We determine all minimal polynomials for second order homogeneous linear diierential equations with algebraic solutions decomposed into in-variants and we show how easily one can recover the known conditions on diierential Galois groups 12,19,25] using invariant theory. Applying these conditions and the diierential invariants of a diierential equation we deduce an alternative method to the algo...
متن کاملApproximately $n$-order linear differential equations
We prove the generalized Hyers--Ulam stability of $n$-th order linear differential equation of the form $$y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x),$$ with condition that there exists a non--zero solution of corresponding homogeneous equation. Our main results extend and improve the corresponding results obtained by many authors.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2017
ISSN: 0893-9659
DOI: 10.1016/j.aml.2016.07.020